Questions are for both separate science and combined science students unless indicated in the question

Q1.

A teacher investigated the radiation emitted by two different radioactive sources, **A** and **B**.

Figure 1 shows a radiation detector positioned near one of the radioactive sources.

Radioactive source

Detector

Distance

The teacher measured the count rate at different distances for each radioactive source.

Figure 2 shows the results.

F igure 2 c gamma ra	an not be used to determine if Source B emits beta radiation or diation.
	w an absorbing material could be used to show which type of semitted by Source B .
acher too	k safety precautions during the experiment.
	ne safety precaution the teacher would have taken to
	e radiation dose the teacher received.
	e radiation dose the teacher received.
	radiation dose the teacher received.
	radiation dose the teacher received.
reduce the	radiation dose the teacher received. ne safety precaution that the teacher would have taken to avoid contaminated.
reduce the	ne safety precaution that the teacher would have taken to avoid

(e) **Figure 3** shows how the number of atoms of a radioactive element in a sample varied with time. (HT only)

Figure 3

Activity is the rate at which a source of unstable nuclei decays.

Determine the activity of the radioactive sample at 300 seconds.

Give the unit.	
Activity =	Unit

(Total 11 marks)

(4)

(1)

$\mathbf{\cap}$	1	
u	Z	

Some isotopes emit nuclear radiation.

(a)	Carbon-14 and carbon-12 are isotopes of carbon.	
	Compare the structure of an atom of carbon-14 with the structure of an atom of carbon-12.	
		_
		-
		-
		- - (3)
(b)	Carbon-14 is a radioactive isotope.	(-,
	Carbon-14 has a half-life of 5700 years.	
	What does 'a half-life of 5700 years' mean?	

The table below gives the half-life of some other radioactive isotopes.

Isotope	Half-life in seconds
Nitrogen-18	0.62
Nitrogen-17	4.17
Fluorine-17	64.37
Fluorine-18	6584.34

Calculate the age of the sa	ample of fluorine-17.
	Age =
	ge
All of the isotopes in the ta	able above emit beta radiation.
	ald cause the biggest risk to a person's health of each isotope. (Physics only)
People who work in the nuradiation and contaminat	uclear power industry need to be aware of ion.
Describe the difference be	etween irradiation and contamination.
Give one health risk to a r	person working close to a source of nuclear
adiation.	23.23

g)	Workers in nuclear power stations are monitored to check the radiation they emit.	
	A worker stands 1 cm away from a radiation detector.	
	The amount of radiation the worker emits is recorded. (HT only) (Physics only)	
	Explain why the worker needs to stand close to the radiation detector.	
h\	Warkers in the pueleer newer industry are expected to pueleer rediction	(2)
h)	Workers in the nuclear power industry are exposed to nuclear radiation.	
	Pilots on aircraft are exposed to cosmic radiation from space.	
	daily dose caused by working in a nuclear power station = 0.00050 mSv	
	hourly dose from cosmic rays to a pilot while flying = 0.0030 mSv	
	Calculate the number of days it takes for a nuclear power station worker to receive the same dose as a pilot flying for 24 hours. (HT only) (Physics only)	
	Number of days =	-
	(Total 17 r	(3) narks
	(_

O_3		
WU	,	

Alpha particles, beta particles and gamma rays are types of nuclear radiation.

(a) What does an alpha particle consist of?

(b) A krypton (Kr) nucleus decays into a rubidium (Rb) nucleus by emitting a beta particle.

Complete the nuclear equation for this decay by writing the missing number in each box.

$$Rr \longrightarrow 85$$
 Rb + $_{-1}^{0}$ e

(2)

(1)

(c) Internal contamination of the human body means radioactive material is inside the human body.

Explain how the risk from internal contamination is different to the risk from external irradiation by a source of alpha radiation. (HT only)

·	·	
-		

(5)

(Total 8 marks)